{1,3}->{n,3}
{1,3}->{n,3}
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{5,3}},5}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
DiedFast35,FewEvents15
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{5,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
DiedFast27,FewEvents23
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{5,3}},3}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
FewEvents28,DiedFast22
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{5,3}},2}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
DiedFast41,FewEvents9
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{3,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
TooMuchOfAVertex15,BoringDifferences11,TooMuchOfAnEdge9,DiedFast9,MaybeInteresting3,FlowerOnly2,PureExponential1
In[]:=
MakePictures[Select[res,WMFilter1[#]==="MaybeInteresting"&]]
Out[]=
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{3,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
DiedFast15,TooMuchOfAVertex15,TooMuchOfAnEdge6,MaybeInteresting6,BoringDifferences3,BoringDifferencesAfterTransient2,FlowerOnly2,PureExponential1
In[]:=
MakePictures[Select[res,WMFilter1[#]==="MaybeInteresting"&]]
Out[]=
In[]:=
PrintCells@{{{{{1,2,2}}{{2,3,3},{3,1,1},{3,1,2}}},{{0,0,0}},7},{{{{1,1,2}}{{1,1,3},{2,2,4},{4,1,1}}},{{0,0,0}},7},{{{{1,2,2}}{{1,3,3},{2,1,2},{3,3,3}}},{{0,0,0}},6},{{{{1,1,2}}{{3,1,4},{4,4,1},{4,4,2}}},{{0,0,0}},7},{{{{1,1,2}}{{1,3,2},{3,3,4},{4,4,1}}},{{0,0,0}},7},{{{{1,1,2}}{{3,2,2},{3,3,3},{3,3,4}}},{{0,0,0}},7}}
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{3,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
TooMuchOfAVertex21,DiedFast10,BoringDifferences8,TooMuchOfAnEdge6,FlowerOnly2,MaybeInteresting2,PureExponential1
In[]:=
MakePictures[Select[res,WMFilter1[#]==="MaybeInteresting"&]]
Out[]=
In[]:=
PrintCells@{{{{{1,2,2}}{{1,3,4},{3,4,4},{4,3,3}}},{{0,0,0}},7},{{{{1,1,2}}{{2,2,3},{4,3,2},{4,4,1}}},{{0,0,0}},7}}
{{{{1,2,2}}{{1,3,4},{3,4,4},{4,3,3}}},{{0,0,0}},7}
{{{{1,1,2}}{{2,2,3},{4,3,2},{4,4,1}}},{{0,0,0}},7}
Out[]=
{Null,Null}
In[]:=
MakePictures[Select[res,WMFilter1[#]==="PureExponential"&]]
Out[]=
{{{{{1,2,3}}{{3,1,4},{3,4,4},{4,4,3}}},{{0,0,0}},5}}
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{3,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
Out[]=
TooMuchOfAVertex18,DiedFast15,BoringDifferences7,TooMuchOfAnEdge6,MaybeInteresting3,BoringDifferencesAfterTransient1
In[]:=
MakePictures[Select[res,WMFilter1[#]==="MaybeInteresting"&]]
Out[]=
In[]:=
PrintCells@{{{{{1,2,2}}{{1,3,4},{2,3,3},{3,2,2}}},{{0,0,0}},7},{{{{1,1,2}}{{2,2,3},{3,3,3},{3,4,2}}},{{0,0,0}},7}}
{{{{1,2,2}}{{1,3,4},{2,3,3},{3,2,2}}},{{0,0,0}},7}
{{{{1,1,2}}{{2,2,3},{3,3,3},{3,4,2}}},{{0,0,0}},7}
Out[]=
{Null,Null}
In[]:=
res=WolframRuleTestW1[{{{{1,3}}{{3,3}},4}},50];
In[]:=
ReverseSort[Counts[WMFilter1/@res]]
I.e. second rule doesn’t matter....