2,3  4,3

In[]:=
maxConnectedAtoms[{{2,3}}{{4,3}}]
Out[]=
13
In[]:=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{4,3}},13],100],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
Out[]=
FewEvents12,PureExponential2,DiedFast17,Disconnected2
In[]:=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
Out[]=
{},
Clear
Copy

​
In[]:=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{4,3}},13],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
Out[]=
DiedFast87,Disconnected9,FewEvents22,PureExponential2,BoringDifferences1,BoringDifferencesAfterTransient1,MaybeInteresting2
In[]:=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
Out[]=

Complex rule

Sample:
{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,10},{8,12},{9,13},{10,7},{11,14},{12,8},{13,9},{14,11}}
In[]:=
ParallelMapMonitored[WolframModelTest[#,Join[Table[0,2,3],Table[0,6,2]]]&,Select[Table[RandomWolframModelRule[{{2,3},{2,2}}{{4,3},{8,2}},15],50],BiConnectedRuleQ]];
Out[]=
$Aborted
In[]:=
Table[RandomWolframModelRule[{{2,3},{2,2}}{{4,3},{8,2}},15],10]
Out[]=
$Aborted
At this size, cannot run canonicalizer.....
In[]:=
RandomWolframModelRuleNC[rulesignature_Rule,s_Integer]:=Rule@@Table[Catenate[RandomInteger[{1,s},#]&/@rulesignature[[n]]],{n,1,Length[rulesignature]}]
In[]:=
res=ParallelMapMonitored[WolframModelTest[#,Join[Table[0,2,3],Table[0,6,2]]]&,Select[Table[RandomWolframModelRuleNC[{{2,3},{2,2}}{{4,3},{8,2}},15],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
Out[]=
DiedFast53,FewEvents6
In[]:=
res=ParallelMapMonitored[WolframModelTest[#,Join[Table[0,2,3],Table[0,6,2]]]&,Select[Table[RandomWolframModelRuleNC[{{2,3},{2,2}}{{4,3},{8,2}},15],5000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
Out[]=
DiedFast568,FewEvents53
In[]:=
res=ParallelMapMonitored[WolframModelTest[#,Join[Table[0,2,3],Table[0,6,2]]]&,Select[Table[RandomWolframModelRuleNC[{{2,3},{2,2}}{{4,3},{8,2}},15],20000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
Out[]=
DiedFast2337,FewEvents219
In[]:=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
{{1,2,3},{4,5,6},{1,4},{4,1}}Join[RandomInteger[15,

Structured rule

In[]:=
HypergraphPlot[WolframModel[{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,10},{8,12},{9,13},{10,7},{11,14},{12,8},{13,9},{14,11}},Join[Table[0,2,3],Table[0,6,2]],6,"FinalState"]]
Out[]=
In[]:=
HypergraphPlot[WolframModel[{{1,2,3},{4,5,6},{1,3},{3,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,10},{8,12},{9,13},{10,7},{11,14},{12,8},{13,9},{14,11}},Join[Table[0,2,3],Table[0,6,2]],6,"FinalState"]]
Out[]=
In[]:=
Table[HypergraphPlot[WolframModel[{{1,2,3},{4,5,6},{1,n},{n,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,10},{8,12},{9,13},{10,7},{11,14},{12,8},{13,9},{14,11}},Join[Table[0,2,3],Table[0,6,2]],6,"FinalState"]],{n,2,6}]
Out[]=
In[]:=
HypergraphPlot[WolframModel[{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,10},{8,12},{9,13},{10,7},{12,8},{13,9}},Join[Table[0,2,3],Table[0,6,2]],6,"FinalState"]]
Out[]=

Original rules

OSZAR »